Theoret. chim. Acta (Berl.) 15, 196—204 (1969)

The Wave Functions of H, and Symmetrical Linear H,

J. W. LINNETT and A. RIERA
Department of Physical Chemistry, University of Cambridge

Received June 10, 1969

The wave functions obtained from configuration interaction treatment of H, (eight configurations)
and H; (sixty-two) are examined. The relative magnitudes of the coefficients of the various terms are
discussed and conclusions are drawn as to how the present functions might be simplified and improved.

Die Wellenfunktionen, die durch eine CI-Behandlung von H, (acht Konfigurationen) und Hy
(zweiundsechzig) gewonnen werden, werden tiberpriift. Die relativen GroBen der Koeffizienten der ver-
schiedenen Terme werden diskutiert und Schluflfolgerungen gezogen, wie die gegenwirtigen Funk-
tionen vereinfacht und verbessert werden konnten.

Etude des fonctions d’onde obtenues par interaction de configurations pour H, (huit configura-
tions) et Hj (soixante deux configurations). Les grandeurs relatives des coefficients des différents termes
sont examinées et l'on tire des conclusions quant & la maniére dont ces fonctions pourraient étre
simplifiées et améliorées.

Introduction

In the previous paper the results of configuration interaction treatment of H,
and symmetrical linear H; have been described. The main purpose of this paper is
to discuss the form of the wave functions for the most stable configuration of H, and
linear symmetrical H,. Because the functions under discussion resemble most
closely those recently derived by Shavitt et al. [ 1] some comparison is made with the
results obtained by them in order to assess the nature and extent of some of the
weaknesses of the present functions. Shavitt et al. employed two s orbitals and three
2p orbitals on each centre, the exponents of the three 2p orbitals on one centre being
the same. Our calculations use only one 1s orbital on each centre and for H; all
the 1s orbital exponents and all the 2p orbital exponents were the same. Shavitt et al.
used different exponents for the central atom orbital from those used for the outer
atom orbitals.

The recent calculations of Gianinetti et al. [2] are also related to the present
ones; they employed 1s, 25 and three 2p orbitals on each centre and used different
exponents for the s orbitals on the outer and central atoms. They examined
symmetrical linear configurations only.

Hydrogen Molecule

With H, Shavitt et al. [1] obtained D,=106kcal/mole (with R, = 1.402)
whereas we obtained a value a little greater than 103 (with R, =1.416).
Gianinetti er al. [2] obtained D, = 106 kcal/mole (with R, =1.4165) equal to the
value obtained by Shavitt et al. [1]. This gives an indication of the advantage
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Table 1. Coefficients ( x 10%) of various AO configurations in the CI function for H,. These coefficients
would normalise the function

SaSa 488 Z,Z, ~35
SuS, 8.5 Z\Zy 038
S\Z, 13 XX, -25
SaZg —48 X, Xy —04

gained from allowing for in-out correlation for those dispositions when two
electrons are near the same nucleus (ionic dispositions).

The eight independent coefficients of AO configurations of this CI function
of H, at its equilibrium separation are listed in Table 1. These are derived from the
figures in Tables 2 and 5 of the preceding paper.

As would be expected, the S, Sy term is largest because of the “end-to-end”
correlation of the electrons. The coefficient of the ionic S, S, term is much smaller
though it is the second largest term. The simplest function that represents these
is that of Coulson and Fischer [3] in which the two electrons are assigned to the
orbitals (S, + KSg) and (S; + K S,). The constant K is a little less than (.1. These
two orbitals may be regarded as being derived from simple LCAO-MO’s, end-to-
end correlation having been added. Alternatively, it may be regarded as a Heitler-
London function in which polarised orbitals (S, + KSg) and (Sz + K S,) replace
S, and Sg. Polarisation can also be included, in an alternative form, by Rosen’s
method. This is a polarisation centred on the same nucleus rather than the other
one. If both types of polarisation terms are included, to achieve greater flexibility,
the orbitals become (S, + KS; + K'Z,) and (S + KS, — K'Zp). To explain the
importance of the next most important term (S, Zg), K’ must be about 0.05. The
coefficient of the S, 7, term will then be expected to be —2 x 0.1 x 0.05 x 0.488
= —0.5x 1072 (obs — 1.3 x 107 ?) and that of the Z, Zy term —0.05 x 0.05 x 0.488
=—0.1x1072 (—0.8 x 10™2). This simple way of describing the molecule is
therefore only satisfactory in providing a reasonable interpretation of the three
largest terms (S, Sg, S.S4 and S, Zy); it does not account for the coefficients of
the smaller terms (S, Z, and Z, Z).

‘Fig. 1 shows graphs of S, Sy, Z, and Zy. The exponents of the § and Z-orbitals
have been optimised. It is apparent that, for the Z-orbitals, the exponent is such
as to place the maximum near the half-way point between the nuclei. The terms
SyZ, and S,Z; may be considered as modifying the main part of the function
(SASg and S, S, terms) in respect of dispositions when one electron is near nucleus
A and the other is a) between A and B, b} on the far side of A from B, and ¢) on the
far side of B from A. The sign and magnitude of the terms are such that they partic-
ularly reduce the importance of ¢) as is to be expected, they increase the
importance of a) as is to be expected and they increase the importance of b) which
is hardly to be expected. Perhaps the difficulty lies in expecting iwo adjustable
terms to introduce the required modifications into three types of dispositions of
the two electrons. It is not necessarily possible to accommodate all three and a
compromise has to be accepted. This is now in process of being investigated.

The terms Z,Z, and X, X, (and Y, Y,) are also of considerable importance.
The sign of the coefficients shows that these allow for angular correlation of the

14 Theoret. chim. Acta (Berl.) Vol. (5



198 J. W. Linnett and A. Riera:

two electrons for those situations in which two electrons are near to one nucleus.
The three terms Z, Z,, X, X, and Y, Y, appear with approximately equal weight.
This is to be expected because angular correlation is likely to be independent of
orientation to a first approximation. The term X, Xy (—04 x 1072) allows for
an azimuthal correlation for those dispositions in which the two electrons are near
different nuclei. This is a much less important term (lower coefficient) than X, X,
because the correlation effect of charge repulsion is much less than when the two
clectrons are close together. Hischfelder and Linnett [4] mistakenly included
X, Xy and omitted X, X,, incorrectly using the argument that the Heitler-London
type terms would be likely to out-weigh ionic type terms, even in those which
allow for correlation, just as they do in the main SS terms. This is now seen to be
quite incorrect (cf. McLean, Yoshimine and Weiss [ 5] Rev. modern Physics) and
arose from an inadequate appreciation of the effects to be achieved by the inclusion
of such terms. The same behaviour can be seen in the function derived by
Gianinetti et al. [2].

The smaller terms in the CI function can therefore be understood. They arise
from two effects: — a) the need to use polarised atomic orbitals, and b) the need
to take account of the effects of electron repulsion on the mutual distribution of
the electrons. The first is a one-electron effect and the second a two-electron one.
The major effect of b) is to force the electrons to opposite ends of the molecule.
Itis, however, also particularly important to include terms which operate to reduce
the importance of those dispositions which place the electrons very near to one
another (e.g. place the two electrons near one nucleus though, in this respect, the
present function suffers because it contains no terms which allow for in-out
correlation in ionic dispositions).

Linear H; Complex

In this paper, calculations have only been made for the symmetrical linear H,
complex because other calculations have shown that the configuration of this
type of minimum energy corresponds to the transition state for the reaction
between molecular and atomic hydrogen. Conroy and Bruner [6] have concluded
that the energy of this H; complex is 7.74 kcal/mole greater than that of H + H,.
The experimental value is between 7 and 10 kcal/mole [7]. However, it cannot
be regarded as certain beyond all possible doubt that the closed Diophantine
integration used by Conroy and Bruner gave all the integrals with the required
accuracy. :

The minimum energy of linear symmetrical H; obtained using CI functions
based on a limited number of atomic orbitalsare: 1s: —1.6106 a.u.(at R = 1.883 a.u.)
Is, 1s': —1.6305 (at R=1.788); 1s, 1s, 2p: 1.6521 (at R=1.764); 1s, 2s, 2p:
1.6473 (at R=1.792) [2]. The energies of activation for these four treatments
(relative to results obtained for similar treatments of H, in each case) were: 23.4,
14.0, 11.0 and 13.1 kcal/mole respectively. The present calculation (1s, 2p) gave
—1.6387 (at R = 1.771) even though, in this calculation, the exponents for all three
centres were equal to one another. The energy of activation calculated was
16.3 kcal/mole. The main reasons for the high value for the energy were the non-
inclusion of in-out correlation and the employment of equal exponents at all
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Fig. 1. Graphs of S, Sy, Z, and Z; along the HH axis for an HH separation of 1.42 a.u.

centres. Boys and Shavitt [9], using a set of functions based on the same two
1s orbitals at each centre, obtained —1.6119 (at R=1.779) and an energy of
activation of 15.4 kcal/mole. Edmiston and Kraus [10], using a Gaussian basis
set, obtained — 1.650 a.u. (at R = 1.78 a.u.). Their calculated value for the activation
energy was 15 kcal/mole.

One of the objects of this stage of our calculations was to examine the form of
the CI function with the object of deciding how best to make improvements. The
above figures show that the present calculated energies are a little higher than
some of the most recent ones but sufficiently low to suggest that it should be
justifiable to make useful conclusions regarding the form of the function and the
importance of the limitations placed on it. The discussion will be along similar
lines to that already used with H, though, of course, in this case, 62 configurations
are involved rather than 8 and the increased complexity renders the physical inter-
pretation more difficult.

The scale of 2p orbitals is rather different in this case from what it was in H,
because the internuclear separation is different. But again the maximum is near
the mid-point between the nuclei (cf. graphs in Fig. 1 for H,). The coefficients of
various AO configurations are shown in Table 2, in which the terms are divided
into six groups: A) Three S-orbitals; B) Two S and one Z; C) One S and two Z;
D) Three Z; E) One S and two X (or Y); F) One Z and two X (or Y). Not all the
coefficients in the table are independent because of the need for the function to be
an eigenfunction of §2.

As with H,, the Heitler-London terms are the largest, the other SSS terms
(ionic ones) being of the order of one-tenth of these. The coefficients cannot
be explained fully using a VB-function (with ionic terms) based on the resonance:
HH-H—H-HH because no terms of the type SAS,Sg would be included.
However, if the function is constructed according to the method of Coulson and
Fischer, the correct form can be achieved if one of the bonding orbitals is delocali-
sed onto the third atom. The leading determinant is

1(S4) (Sp+0.008S,)(0.16 S, +0.14 S+ S)If ,

other determinants being added to make the whole function an eigenfunction of
§? and to have the correct symmetry. With a l-electron bond function S, S, Sy

14%
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Table 2. Coefficients ( x 10%) of various atomic orbital configurations in the 62 term CI function of H.
The coefficients are those that would normalise the whole function. The order of spin functions is offa

Section A. SSS terms (4 independent coefficients):

SaSpSc 41.23 SaSpSs 585
SAScSy 20.62 S4S,Sc 3.52
SuSaSc 20.62 SaSxSs 3.16

Section B. ZSS terms (14 independent coefficients):

Z, 85S¢ —081 SuSsZz +5.38
Z,ScSs ~3.93 S5S,Zg +6.23
SaZ,Sc +3.13 S\Z5Ss —086
Z,S554 —248 Z,8,Sc —1.46
Z,5,55 ~2.10 Z,ScSa —127
SuZsSs +037 SaZxSc —0.19
Z,S,S4 +1.23 SaSaZs —0.68
7,555, —2.10 S5SsZn ~0.03
Z,ScSc +1.04 SAScZy +8.61

Section C. SZZ terms (13 independent coefficients):

SaZpZc +0.42 Z,ZsSy ~0.20
S, ZoZy ~1.02 Z4Z, Sy 097
ZSsZc +1.44 Z, 8475 +0.76
SaZpZa +0.59 SaZnZc —047
SaZaZg —~0.13 SaZcZs —0.32
ZaSaZy ~0.71 Z,SaZc —~0.15
SyZ\Z4 ~0.68 Z,Z,Sp —1.22
VAV ~3.03 Z,Z:Sy +0.53
SaZcZe ~2.18 Z,SpZ¢ +1.05

Section D. ZZZ terms (4 independent coefficients):

ZaZoZsy ~041 ZyZnZc —0.04
ZaZnZs ~0.72 Z\ZsZs +043

Section E. SXX terms (13 independent coefficients):

SaX.\ X, +0.72 Sy X, Xs —0.18
Sy Xs X, +1.05 Sy Xp X, +0.35
X, S, X, ~0.33 X, Sp Xp —0.53
S, X, Xe +0.08 Sp X Xc —0.00
SaXc Xy ~0.11 X, SpXc —0.00
X, 8, Xe +0.19
Sy Xy Xc —0.15
Sa XXy +0.51
XgS, X, ~0.66
Sa Xy Xs ~0.36 X, X, S ~0.88
Sa Xp Xg ~2.89

SaXcXe ~181
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Table 2 (continued)

Section F. ZXX terms (14 independent coefficients):

Za X\ Xz —0.15 Z, Xy Xc —0.12
Z,Xp X, —0.14 Zy X Xy —0.10
X\ Z, Xa ~001 XoZa Xe ~0.02
Z, X, Xc +0.04 Zy X\ Xp —023
Z, X X, +0.03 Zy Xy X, -0.18
X, Z, Xc +0.02 X, Zy X —0.06
Z\ X, X, +0.01 Zy X, Xa +0.46
Zy Xg Xy +0.64 Zp Xy Xy +1.07
Zy XX, -0.01 ZXe X, —0.01

would be included but its coefficient would be too small. Again, delocalisation of
one of the orbitals would achieve agreement with the coefficients in Table 2
Section A. The leading determinant is

1(S,) (0.17 S, + Sg) (013 S, +0.14 S + S -

Because it allows for the tendency of two electrons to be near the central
nucleus, the fact that the term S, Sg S has the largest coefficient of the ionic terms
is understandable. And the coefficient of S,S,Sc is also reasonable. However,
it is surprising that the coefficient of S, S, Sy is as large as it is, because it favours
a disposition of the three electrons which tends to concentrate them towards one
end of the molecule.

Some of the SSZ terms are important. In fact, the S,S5.Zy term is next in
importance after the Heitler-London terms. The value of its coefficient exceeds
those of the ionic SSS terms. The contribution of these terms shows that, as in H,,
polarisation effects are important.

The SSS and SSZ terms can be examined in a variety of ways. The following
seems to be a convenient though somewhat subjective one. The lobes of the Zy
orbital lie in the regions between A and B (—wve lobe) and between B and C
(+ve lobe) — see Fig. 1. Similarly, the lobes of the Z, lie in the regions outside A
(—ve) and between A and B (+wve). On the basis of this feature, Table 3 is con-
structed from the coefficients in Table 2. In any one of the seven sets. AO con-
figurations are considered which contain two particular S-orbitals, the third one
being variable. For instance, set i) is based on the coefficients of S, S, Sg, SASASc,
SaSAZ A, SASaZy and S, S, Z¢. The coefficients of the first are placed opposite B
and C. (S, 5454 has a coefficient of zero.) Combinations of the SSZ coefficients are
placed between A and B, or B and C, or above A, or below C, as these signify the
regions in which the Z-lobes are concentrated. (The number above A is the
coefficient of S, S, Z, with changed sign (—wve lobes of Z,); between A and B the
coefficient of that term minus that of the S, S, Z5 term is listed because the negative
lobe of Z is located there, etc.) The spins associated with the orbitals common to
the set are shown on the left. The first set is constructed from configuration S, S, X.

It can be seen that the third electron concentrates in the BC bond when two
electrons are near nucleus A. The probability of it lying outside C is reduced
compared with the SSS term, though there seems to be some probability of finding
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Table 3. Analyses of SSS and SSZ functions. Two electrons are restricted to S orbitals as shown on the
left of each diagram (see text). For the other electron, the coefficient of each SSS orbital is entered
against each atom. It is presumed that the lobes of the p, orbitals are located between the atoms; the
numbers between the atoms indicate magnitudes, remembering that between atoms two lobes contribute

o+ 13 i - 210 i) — 248 ) — 210
af A 0 — 5.85 o A 0 B A -~ 316
— 055 + 2.07 - 290 - 413
B + 3.16 «f B 0 B B + 585 o B 0
+ 0.36 — 2.07 + 4.57 + 2.30
C + 352 C + 5.85 C +41.23 C +20.62
— 1.04 + 2.10 + 0.81 + 393
v) - 127 vi) — 037 vii) + 0.19
o A 0 o A + 316 o A + 353
— 7.34 + 0.49 - 0.19
B +20.62 o« B + 585 B +41.32
+ 715 + 2.26 - 0.19
p C + 352 C +20.62 o« C + 3.52
+ 1.46 — 312 + 0.19

it outside A. This may be a consequence of limitations imposed by the functions
used (cf. H, and see later), rather than representing any real effect. In set ii) the
third electron is strongly excluded from the whole region near B, when the other
two electrons are located near that nucleus, and is concentrated near A and C or
just outside them. In set iii), the concentration on C spreads towards B, where there
is an electron of opposite spin. As ini), there is some apparent probability of finding
the electron outside A. In set iv), the spins associated with the two fixed orbitals
are reversed compared with ii1). The probability of finding the third electron near C
is reduced. However, it is localised more strongly there because the electron near B
has the same spin. There is some probability of finding the electron near A where
there is an electron of opposite spin, but it is less than near C. Set v) is particularly
interesting because, except for spin, the two “fixed” orbitals are symmetrically
disposed. The electron is concentrated near B but the probability spreads markedly
towards the nucleus C but not towards A — though, as in i), there is some
probability of finding the electron outside A. It is interesting that the term S, ScZ5
warrants such a high coefficient because it is making allowance for spin-polarisa-
tion (and not charge-polarisation). It might have been thought that this spin
(Pauli Principle) Exclusion effect would have been achieved by the use of deter-
minantal functions without the need for any further terms. But this is not so.

In sets vi) and vii), the two “fixed” orbitals are associated with the same spin
functions. In set vi) (S, X Sg), the “third” electron is spread over the region A to C
though, inevitably, the probability of finding it near C is greatest. The same is
true for set vii) (S, X Sc) except that the “mobile” electron is strongly concentrated
near B.

In Table 3, there are four locations representing the four regions covered by
the lobes of the Z-orbitals. But there are only three Z-orbitals in the basis set.
Therefore, the “numbers” in Table 3 for the four regions are not completely in-
dependent of one another. Probably a much better way of incorporating the
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polarisation effects which is achieved here by the SSZ terms would be to use four
Gaussian functions, one for each region, instead of the three Z-orbitals. This is
being tested.

Among the SZZ terms, the largest coefficients are associated with the S, Z5Z5
and S,Z-Z terms which introduce angular correlation (—wve coefficients) into
those dispositions in which two electrons are near the same centre. Including the
Z,Z,Sg term also, the coefficients are in all three instances between —0.4 and
—0.6 times the coefficients of the corresponding SSS terms. The coefficients
(+ve signs) of the Z, Z:Sy and Z, S5 Z terms show that these serve to decrease
the probability of all three electrons approaching the centre of the radical (nucleus
B) together. All the ZZZ terms are relatively unimportant because they combine
two effects which may be regarded as corrections to the main function (polarisation
and correlation). The most important term is Z, Z, Zy, which allows for angular
correlation on A and Z, ZyzZg, which allows for angular correlation on B. The
Heitler-London type term is less important.

Of the SX X terms, again those allowing for angular correlation (—wve coeffi-
cient) are the most important (S, Xz Xg and S, X Xc). The ratio of the coefficients
of these and of the X, X, Sg term to the corresponding SSS terms are —0.5, —0.5
and —0.3 respectively. Except for the last this ratio is similar to those for the SZZ
terms (cf. H,). The coefficients of the terms involving both X, and X are very
small because azimuthal correlation for electrons at opposite ends of this triatomic
radical is of little importance. The terms containing both X, and Xg have, on the
whole, coefficients of intermediate size.

All the coefficients of the ZX X terms are small, thongh the ones that make
some allowance for azimuthal correlation of two electrons near the same nucleus
(e.g. ZA Xz Xp and Z; X Xg) are the most important.

From the above discussion, it is clear that we can understand in part the form
of CI functions expressed in terms of AQ’s which brings out the localised features.
The function for H; given in Ref. [2] could be transformed in a similar way. It
would be interesting for this to be done. This experience is being used to improve
the present function by adding terms involving Gaussian functions in such a way
as to make allowance for in-out correlation which has not been included here,
and more effectively for the polarisation effects.

It is interesting that Michels and Harris [11] have commented on the im-
provement achieved by adding a 3do orbital on the central atom. From the above
discussion, we would anticipate that the inclusion of a central 3do orbital along
with the three 2po orbitals would make for some improvement because there would
then be four orbitals to allow for the four regions referred to earlier when
discussing the SZZ terms. The employment of four Gaussian functions along the
internuclear line would probably achieve a similar result.

One of us (A.R.) thanks the British Council for a grant.
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